ÔN TẬP: PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP DÙNG HẰNG ĐẲNG THỨC
KIẾN THỨC CẦN NHỚ
Về áp dụng phương pháp dùng hằng đẳng thức cần chú ý:
– Trước tiên phải nhận xét xem các hạng tử của đa thức có chứa nhân tử chung không?
– Nếu có thì áp dụng phương pháp đặt thành nhân tử chung
– Nếu không áp dụng được phương pháp đặt thành nhân tử chung thù xem có thể áp dụng hằng đẳng thức đáng nhớ để phân tích đa thức thành nhân tử hay không?
– Chú ý: Đôi khi phải đổi dấu mới áp dụng được hằng đẳng thức
Ví dụ:
BÀI TẬP VÍ DỤ
Ví dụ 1: Phân tích đa thức thành nhân tử
a)
b)
c)
Bài giải:
a)
b)
c)
Ví dụ 2:
a) Tính nhanh:
b) Hiệu các bình phương của hai số tự nhiên liên tiếp bằng 11. Tìm hai số ấy.
Bài giải:
a) Tính nhanh:
Ta có:
b) Gọi hai số tự nhiên liên tiếp cần tìm là và
Theo đề bài, ta có:
Vậy hai số phải tìm là và .
BÀI TẬP VẬN DỤNG
BÀI TẬP CƠ BẢN
Bài 1: Phân tích đa thức thành nhân tử:
a)
b)
c)
d)
Bài giải:
a)
b)
c)
d)
Bài 2: Tìm , biết:
Bài giải:
Vậy các giá trị cần tìm là:
BÀI TẬP NÂNG CAO
Bài 1: Phân tích đa thức thành nhân tử:
a)
b)
c)
d)
Bài giải:
a)
b)
c)
d)
Bài 2: Chứng minh rằng:
a) luôn chia hết cho 7 với mọi giá trị nguyên của n.
b) luôn chia hết cho 21 với mọi giá trị nguyên của n.
Trên đây là các kiến thức cần nhớ và các bài tập ví dụ minh họa về nội dung của bài học Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức – toán cơ bản lớp 8.