1.4. Số phần tử của một tập hợp. Tập hợp con
Nội dung chính
ÔN TẬP: SỐ PHẦN TỬ CỦA MỘT TẬP HỢP. TẬP HỢP CON
KIẾN THỨC CẦN NHỚ
1. Một tập hợp có thể có một phần tử, có nhiều phần tử, có vô số phần tử, cũng có thể không có phần tử nào.
2. Tập hợp con
(Tập hợp là tập hợp con của tập hợp
Tập hợp không có phần tử nào gọi là tập rỗng. Kí hiệu:
Tập hợp rỗng được coi là tập con của mọi tập hợp.
BÀI TẬP VÍ DỤ
Ví dụ 1: Cho tập hợp
Các tập hợp con của tập hợp
Vậy tập hợp
Ví dụ 2: Tập hợp B = {5; 6; 7;…; 95} có bao nhiêu phần tử?
Bài giải:
Tập hợp B gồm có số phần tử là: (95 – 5) : 2 + 1 = 46 (phần tử)
BÀI TẬP VẬN DỤNG
BÀI TẬP CƠ BẢN
Bài 1: Số phần tử của tập hợp P gồm các chữ cái của cụm từ “WORLD CUP”
Bài giải:
Tập hợp P cần tìm là P = {W; O; R; L; D; C; U; P}
Tập hợp P gồm 8 phần tử.
Bài 2: Cho tập hợp B = {m; n; p; q}. Số tập hợp con có 2 phần tử của tập hợp B là?
Bài giải:
Các tập hợp con của tập hợp B có hai phần tử là:
{m; n}; {m; p}; {m; q}; {n; p}; {n; q}; {p; q}
Vậy có 6 tập hợp con có 2 phần tử của tập hợp B.
BÀI TẬP NÂNG CAO
Bài 1: Dùng ba chữ số 0; 4; 6 để viết tập hợp các số tự nhiên có ba chữ số khác nhau. Tập hợp này có bao nhiêu phần tử?
Bài giải:
Với ba chữ số 0; 4; 6 có thể lập các ố tự nhiên có ba chữ số khác nhau là 406; 460; 604; 640.
Do đó tập hợp cần tìm có 4 phần tử.
Bài 2: Cho tập hợp E = {a ∈ N | 5 < a ≤ 10} và tập hợp F = {8; 9; 10; 11; 12}.
Có bao nhiêu tập hợp con gồm hai phần tử vừa thuộc tập hợp E vừa thuộc tập hợp F?
Bài giải:
Ta có tập hợp E là E = {6; 7; 8; 9; 10}
Khi đó ta có: E ∩ F = {8; 9; 10}
Vậy các tập hợp con có 2 phần tử vừa thuộc tập hợp E vừa thuộc tập hợp F là:
{8; 9}; {8; 10}; {9; 10}.
Do đó có 3 tập hợp thỏa mãn yêu cầu bài.
Xem thêm: Phép cộng và phép nhân.
Chúc các em học tập hiệu quả!